网站首页|在线留言|联系我们

产品分类
新品展示
联系方式

潍坊鲁川环保设备有限公司
联系人:秦经理

您现在的位置:首页 > 产品展示 > > 玻璃钢污水处理设备 > 玻璃钢污水处理罐原理图

玻璃钢污水处理罐原理图

简要描述:

玻璃钢污水处理罐原理图每年只需要对设备内沉积的随水流入的泥沙、无机污泥清理一次即可。
2、智能控制
设备中涉及的水泵、风机、消毒等用电设备全部由PLC控制,可以设定程序

打印当前页

分享到:

玻璃钢污水处理罐原理图

玻璃钢污水处理罐原理图——厌氧折流板反应器

  美国Stanford 大学的McCarty及其合作者于1982年在厌氧生物转盘反应器的基础上改进开发出了厌氧折板反应器ABR(Anaerobic Baffled Reactor ,简称ABR)。该反应器是一中高新型厌氧反应器,从结构看相当于几个升流式污泥床的串联,实现了产酸菌群和产甲烷菌群在不同隔室生长的条件,在高浓度有机废水的处理中有特殊的优势。因具有结构简单、污泥截留能力强、稳定性高、对高浓度有机废水,特别是对有毒、难降解废水处理中有特殊的作用,因而引起了人们的关注

要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。

ASB的工艺设计主要是计算UASB的容积、产气量、剩余污泥量、营养需求的平衡量。

UASB的池形状有圆形、方形、矩形。污泥床高度一般为3-8m,多用钢筋混凝土建造。当污水有机物浓度比较高时,需要的沉淀区与反应区的容积比值小,反应区的面积可采用与沉淀区相同的面积和池形。当污水有机物浓度低时,需要的沉淀面积大,为了保证反应区的一定高度,反应区的面积不能太大时,则可采用反应区的面积小于沉淀区,即污泥床上部面积大于下部的池形。 

    气液固三相分离器是UASB的重要组成部分,它对污泥床的正常运行和获良好的出水水质起十分重要的作用,因此设计时应给予特别的重视。根据经验,三相分离器应满足以下几点要求: 

    1、混和液进入沉淀区之后,必须将其中的气泡予以脱出,防止气泡进入沉淀区影响沉淀; 

膨胀颗粒污泥床

  EGSB),中文名膨胀颗粒污泥床,是第三代厌氧反应器,于20世纪90年代初由荷兰Wageingen农业大学的Lettinga等人率先开发的。其构造与UASB反应器有相似之处,可以分为进水配水系统、反应区、三相分离区和出水渠系统。与UASB反应器不同之处是,EGSB反应器设有专门的出水回流系统。EGSB反应器一般为圆柱状塔形,特点是具有很大的高径比,一般可达3~5,生产装置反应器的高度可达15~20米。颗粒污泥的膨胀床改善了废水中有机物与微生物之间的接触,强化了传质效果,提高了反应器的生化反应速度,从而大大提高了反应器的处理效能。
ABR厌氧反应器内设置若干竖向导流板,将反应器分隔成串联的几个反应室,每个反应室都可以看作一个相对独立的升流式污泥床系统,废水进入反应器后沿导流板上下折流前进,依次通过每个反应室的污泥床,废水中的有机基质通过各反应室并与其中的微生物充分接触而得到去除。借助于水流的上升和沼气的搅动作用,反应室中的污泥上下运动,水流在不同隔室中流态呈现完全混合态。但是由于导流板的阻挡和污泥自身的沉降性能,污泥在水平方向的流速极其缓慢,从而大量的厌氧污泥被截留在反应室中,反映器在整个流程方向表现为推流式流态。
污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器,发展十分迅速。

处理出水通过设备上面的砂、水分离设备分离后,水流出设备外,砂留在设备内。运行所产生的甲烷气体在设备的上方由专门设备送到贮气罐后备用。

  特点:

  1、处理效率高,处理量大。能耗低,运行费用低,能自动连续运行。

  2、处理时能产生大量CH4气体,CH4可作燃料,能回收大量能源。

  3、占地面积省,适应性强,选型方便,工期短。

污泥稳定化过程物质转化机理揭示

总结厌氧消化和好氧发酵过程物质转化过程,引用土壤学普遍认同的腐殖酸多酚合成理论来解释污泥稳定化过程有机质合成的过程机理,用传统的厌氧两阶段理论和好氧三羧酸循环理论解释有机物的降解过程。如图5所示,在一定的条件下(有氧、无氧、适宜温度等),污泥中的有机物(游离的碳水化合物)以及细菌细胞裂解释放到胞外的有机物(蛋白质、多糖等)在微生物和氧化酶的作用下,一部分有机物经过好氧的三羧酸循环或厌氧的两阶段(水解酸化和产甲烷),逐步分解为小分子有机物(丙酮酸、氨基酸等),再进一步转化为CO2、H2O、NH3(或NH+4)、CH4等无机小分子物质;另一部分有机物先转化为小分子有机物,如多酚、醌类(丙酮酸的前驱物)、氨基化合物等,再在微生物和酶的作用下,与含氮化合物聚合成富里酸,这一过程主要发生在厌氧消化的热水解阶段和好氧发酵的一次发酵阶段;接着,生成的富里酸进一步聚合,并逐步生成胡敏酸,胡敏酸进一步聚合形成腐黑物;这一过程主要发生在厌氧消化的消化阶段和好氧发酵的二次发酵和陈化阶段。至此,完成了有机物的降解与腐殖酸类物质的合成。其中,有机物的降解过程相对较快,腐殖酸的合成过程相对缓慢,特别是经过长时间的陈化过程,胡敏酸和腐黑物才缓慢形成。

经由镜检流程得知:生物膜表征的絮状物,凸显出优良形态,且膜体以内的构架很致密。

这就表明,生物膜附带着多重微生物,具有较强的抗盐度。与此同时,生物膜还潜藏细微的原生动物及后生动物,例如,枝虫、纤毛虫。

二段好氧池,生物膜被查出大规模线虫,以及线性蚯蚓。

这种耐盐的微生物,拓展了污泥体系的食物链,也延展了原有的生态体系。微生物蚕食污泥,缩减了含泥量,也缩减了平常的排放量。拟定完备工艺,带有无剩余的特性。运行起始,构建合理体系,排放少量污浊泥水。

COD去除成效

生物接触氧化工艺,可以有效去除高盐有机废水中的COD。

经过相关分析得知,进水中COD波动较大,而经过处理之后,出水COD浓度均可以降低至每升45毫克以下;COD平均浓度仅达到每升42毫克,COD去除率超出了93%。

这就表明,对污泥内的有机物,生物接触氧化工艺的处理,具有运行成效优、流程稳定的特性。氧化处理池可适应高盐态势下的体系环境。

通常来看,惯用的生化法,无法高效处理高盐有机废水。

其原因主要是:生化处理体系降低了污泥活性;絮状累积污泥慢慢解体,留存的生物难以存续。生物接触氧化工艺可有效降低污水中的盐浓度,基本可以控制在4.3%以下;平均情形之下的盐度,也被缩减直至3.7%。这种情形下,COD去除效率可以保持较高的水准。

经过长期运转,生物膜原有的耐盐特性,也在逐渐递增,能与高盐特性的水质契合。

生物接触氧化工艺可以有效提高原有的耐受特性。经由接触氧化处理之后,生物膜并不会凸显出絮状分解的倾向。而普通处理得到的活性污泥,常会使测定好的盐度数值发生改变,盐度更替造成絮状漂移。

除此以外,生物接触氧化工艺排放的污泥比较少;污泥沉降特性也超出普通处理工艺。这样做,就化解了沉降中的难题。

污泥活性对苯酚毒害效应的响应及其变化

在整个试验过程中,两个活性污泥系统的处理效果没有明显的差异(P>0。05)[试验过程中,两个系统COD和NH4+-N去除率分别为(95。38±4。41)%、(97。06±2。42)%和(98。92±1。58)%、(98。46±2。29)%],可能的原因是在足够长的反应时间(本试验曝气反应时间为6h)条件下对一定范围内浓度(<400mg&dot;L-1)的进水苯酚能够作为碳源的一部分被细菌充分降解,以致对活性污泥处理效果不产生明显影响。但进水浓度在400mg&dot;L-1以下的苯酚对好氧污泥形态、比耗氧速率(SOUR)以及活性污泥微型动物群落种属组成均有明显的影响。

电子传递体系(ETS)活性可表征活性污泥系统中的微生物活性,揭示系统硝化反硝化规律,表征重金属对污泥活性的影响。TTC-ETS和INT-ETS是用于检测污泥ETS活性的常用方法,两者因氧化还原电位大小以及从呼吸链上接受电子的部位不同(后者较早地从呼吸链上接受电子)而对污泥活性的响应不同。然而,是否可以采用污泥ETS活性表征酚类有机毒害物质对污泥活性的影响,未见报道。本研究通过测定TTC-ETS活性和INT-ETS活性,分析比较确定适用于有机毒害物苯酚对污泥活性影响的有效表征指标,以揭示在苯酚毒害效应影响下污泥活性的变化规律。

活性污泥法,在整个试验期间内,对照系统CK、试验系统EK中的污泥TTC-ETS活性分别为(200。26±65。57)μg&dot;(mg&dot;h)-1、(152。91±63。63)μg&dot;(mg&dot;h)-1,均存在较大波动,且变化趋势相近,这与前人的研究结论相一致,即进水水质等运行参数的改变不会影响SBR系统中污泥TTC-ETS活性的变化趋势。

当进水苯酚为低浓度(50mg&dot;L-1)时,苯酚的毒害效应对系统中污泥TTC-ETS活性的影响并不显著(P=0。499),其抑制率IR仅为(20。75±10。43)%(图2,下同);当进水苯酚浓度增加到100mg&dot;L-1时,CK、EK两个系统中TTC-ETS活性均随运行时间变化而有所增大,且EK系统的TTC-ETS活性此阶段的初期更大,试验第36d为230。30μg&dot;(mg&dot;h)-1,比CK系统[168。57μg&dot;(mg&dot;h)-1]大36。62%,这说明适当浓度的苯酚会短暂地促进污泥TTC-ETS活性的增大。

ETS活性表征污泥活性的方法实质上是通过测定好氧微生物的呼吸活性来间接指示活性污泥的生物活性,故适当浓度的苯酚短时间内能够通过促进TTC-ETS活性的增长(活性污泥中微生物的呼吸增强)来增强微生物(包括微型动物,下同)对苯酚毒性生存环境的适应。随后TTC-ETS活性开始降低,系统运行第46d,试验系统中污泥TTC-ETS活性达到的32。61μg&dot;(mg&dot;h)-1,仅有对照系统的18。66%,抑制率高达81。34%。这是因为随着时间的推移,苯酚在活性污泥中得到累积,超过污泥中微生物的耐受阈值,微生物开始大量死亡,导致污泥活性急剧降低,污泥TTC-ETS活性呈现出急剧减小的趋势。第50d,两个系统中的污泥TTC-ETS活性逐步增大,且两者的差距逐渐缩小。

这是由于试验系统中的活性污泥某些微生物通过驯化,逐步适应了有毒的生存环境,大量繁殖的结果。总的看来,进水苯酚浓度为100mg&dot;L-1时,试验系统与对照系统中污泥TTC-ETS活性存在显著差异(P=0。045)(表1,下同),说明此浓度下的苯酚毒性对污泥活性产生了明显的抑制效应;进一步增大进水苯酚浓度至300mg&dot;L-1,试验系统与对照系统中的污泥TTC-ETS活性差异性进一步增大(P=0。008),但在这一阶段后期,苯酚对污泥TTC-ETS活性的抑制率相对稳定在40%左右。

 

 

留言框

  • 产品:

  • 留言内容:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 详细地址:

  • 省份:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
客户至上 用心服务
在线客服
周一至周六
8:00-17:30