网站首页|在线留言|联系我们

产品分类
新品展示
联系方式

潍坊鲁川环保设备有限公司
联系人:秦经理

您现在的位置:首页 > 产品展示 > > 地埋式污水处理设备 > WSZ-F地埋式污水处理设备

WSZ-F地埋式污水处理设备

简要描述:

WSZ-F地埋式污水处理设备在好氧反应室内,大量细菌,真菌和微生物在曝气、氧化合分解的作用下,新陈代谢而形成悬浮物体。过滤澄清室的污泥入口用于控制从好氧反应室流入的污水流。

打印当前页

分享到:

WSZ-F地埋式污水处理设备

WSZ-F地埋式污水处理设备——选择的原则

1工艺选择的主要技术经济指标包括:处理单位水量投资、削减单位污染投资、处理单位水量电耗和成本、削减单位污染物电耗和成本、占地面积、运行性能可靠性、管理维护难易程度、总体环境效益等。

2城市污水处理工艺应根据处理规模、水质特征、受纳水体的环境功能及当地的实际情况和要求,经全面技术经济比较后优选确定。

3应切合实际地确定污水进水水质,优化工艺设计参数,对污水的现状水质特征,污染物构成必须进行详细调查或测定,作出合理的分析预测,在水质构成复杂或特殊时,应进行污水处理工艺的动态试验,必要时应开展中试研究。

4积极审慎地采用新工艺,对在国内首次应用的新工艺,必须经过中试和生产性试验,提供可靠的设计参数后再进行应用。

5同一个污水厂分期建设时,各阶段应尽量采用同一种工艺,而且各阶段的建设规模应尽量相同。

智能控制技术的应用

可以带来人工成本降低、运营水平的改善、节能降耗、提高能源自给提高污水处理厂的运营管理效率。此外在全球能源危机、气候变化和资源紧缺背景下,发展低能耗、低物耗,在稳定达标前提下能源化、资源化、精细化的管理及控制的污水处理新模式,将已有技术和各种新技术,包括智能控制技术不断融入污水处理工程中,是未来污水处理的发展方向。

根据当前污水处理状况,传统的污水处理方式很难达到预期的效果,因此,当前我们可以采用智能控制技术进行污水处理,其能够有效应对污水处理过程中出现的各种情况,并对其进行监测,在一定程度上可以提升污水处理运行系统的稳定性,还可以促进处理结果的度。

1、智能控制系统的基本情况

现阶段,依据污水处理中智能控制系统现应用情况,我们主要是根据计算机技术进行人脑思维的模拟,并综合人工智能技术,对污水处理运行系统的全过程进行科学有效的监控和检测,并实现全过程运行系统的智能化。

同时在污水生物智能控制系统过程中,我们主要选用硬件和软件系统,其中硬件系统主要包括:传感器、各种检测设备,以及智能控制器和通讯接口等;而软件系统主要是为了认知智能控制系统的学习,还有信息感知的处理和数据库的掌握等。

水处理流程

(1)工艺流程说明二次处理工艺流程为“调整池→生物氧化→接触消毒”。医院的污水通过污水处理厂进入了调整池。调节池前部设有自动格栅。在调整池中设置了上升泵,污水上升后,进入好氧池进行生物处理,好氧池的水进入接触池消毒,水达到了排出量。在调节池、生物化学处理池、接触池的污泥和淤泥等污水处理场产生的垃圾集中消毒后排放到外面进行焚烧。消毒可选用巴氏蒸汽消毒或投加石灰等方式。二级处理工艺(非传染性疾病和传染性疾病污水)分别廉价收集传染病医院的污水和粪便。城市污水立即进到预消毒杀菌池开展消毒杀菌解决后进到污水池,患者的排泄物先要单独消毒杀菌根据下水管道进到农村化粪池或独立解决。各建筑物须在密闭式的环境中运行,根据一致的排风系统开展通气,有机废气根据消毒杀菌后排污,消毒杀菌可采用紫外线消毒系统软件。

(2)工艺的特点好氧生物化学处理单元可以去除CODcr、BOD5等有机污染物,好氧生物化学处理可以选择接触氧化、活性污泥和高效好氧工艺处理,如膜生物反应器、曝气生物滤池等工艺。采用具备过虑作用的高效率好氧处理工艺,能够减少悬浮固体浓度值,有益于事件消毒杀菌。

工作原理:

  系列污水处理设备去除有机污染物及氨氮主要依赖于设备中的AO生物处理工艺。其中工作原理是在A级,由于污水有机物浓度很高,微生物处于缺氧状态,此时微生物为兼性微生物,所以A级池不仅具有一定的有机物去除功能,减轻后续好氧池的有机负荷,有机物浓度降低,但仍有一定量的有机物及较高NH3-N存在。为了使有机物得到进一步氧化分解,同时在碳化作用下硝化作用能顺利进行,在O级设置有机负荷较低的好氧生物接触氧化池。在O级池中主要存在好氧微生物及自氧型细菌(硝化菌)。其中好氧微生物将有机物分解成CO2和H2O;自养型细菌(硝化菌)利用有机物分解产生的无机碳或空气中的CO2作为营养源,将污水中的NH3-N转化成NO-2-N、NO-3-N,O级池的出水部分回流到A级池,为A级池提供电子接受体,通过反硝化作用

污泥活性对苯酚毒害效应的响应及其变化

在整个试验过程中,两个活性污泥系统的处理效果没有明显的差异(P>0。05)[试验过程中,两个系统COD和NH4+-N去除率分别为(95。38±4。41)%、(97。06±2。42)%和(98。92±1。58)%、(98。46±2。29)%],可能的原因是在足够长的反应时间(本试验曝气反应时间为6h)条件下对一定范围内浓度(<400mg&dot;L-1)的进水苯酚能够作为碳源的一部分被细菌充分降解,以致对活性污泥处理效果不产生明显影响。但进水浓度在400mg&dot;L-1以下的苯酚对好氧污泥形态、比耗氧速率(SOUR)以及活性污泥微型动物群落种属组成均有明显的影响。

电子传递体系(ETS)活性可表征活性污泥系统中的微生物活性,揭示系统硝化反硝化规律,表征重金属对污泥活性的影响。TTC-ETS和INT-ETS是用于检测污泥ETS活性的常用方法,两者因氧化还原电位大小以及从呼吸链上接受电子的部位不同(后者较早地从呼吸链上接受电子)而对污泥活性的响应不同。然而,是否可以采用污泥ETS活性表征酚类有机毒害物质对污泥活性的影响,未见报道。本研究通过测定TTC-ETS活性和INT-ETS活性,分析比较确定适用于有机毒害物苯酚对污泥活性影响的有效表征指标,以揭示在苯酚毒害效应影响下污泥活性的变化规律。

活性污泥法,在整个试验期间内,对照系统CK、试验系统EK中的污泥TTC-ETS活性分别为(200。26±65。57)μg&dot;(mg&dot;h)-1、(152。91±63。63)μg&dot;(mg&dot;h)-1,均存在较大波动,且变化趋势相近,这与前人的研究结论相一致,即进水水质等运行参数的改变不会影响SBR系统中污泥TTC-ETS活性的变化趋势。

当进水苯酚为低浓度(50mg&dot;L-1)时,苯酚的毒害效应对系统中污泥TTC-ETS活性的影响并不显著(P=0。499),其抑制率IR仅为(20。75±10。43)%(图2,下同);当进水苯酚浓度增加到100mg&dot;L-1时,CK、EK两个系统中TTC-ETS活性均随运行时间变化而有所增大,且EK系统的TTC-ETS活性此阶段的初期更大,试验第36d为230。30μg&dot;(mg&dot;h)-1,比CK系统[168。57μg&dot;(mg&dot;h)-1]大36。62%,这说明适当浓度的苯酚会短暂地促进污泥TTC-ETS活性的增大。

ETS活性表征污泥活性的方法实质上是通过测定好氧微生物的呼吸活性来间接指示活性污泥的生物活性,故适当浓度的苯酚短时间内能够通过促进TTC-ETS活性的增长(活性污泥中微生物的呼吸增强)来增强微生物(包括微型动物,下同)对苯酚毒性生存环境的适应。随后TTC-ETS活性开始降低,系统运行第46d,试验系统中污泥TTC-ETS活性达到的32。61μg&dot;(mg&dot;h)-1,仅有对照系统的18。66%,抑制率高达81。34%。这是因为随着时间的推移,苯酚在活性污泥中得到累积,超过污泥中微生物的耐受阈值,微生物开始大量死亡,导致污泥活性急剧降低,污泥TTC-ETS活性呈现出急剧减小的趋势。第50d,两个系统中的污泥TTC-ETS活性逐步增大,且两者的差距逐渐缩小。

这是由于试验系统中的活性污泥某些微生物通过驯化,逐步适应了有毒的生存环境,大量繁殖的结果。总的看来,进水苯酚浓度为100mg&dot;L-1时,试验系统与对照系统中污泥TTC-ETS活性存在显著差异(P=0。045)(表1,下同),说明此浓度下的苯酚毒性对污泥活性产生了明显的抑制效应;进一步增大进水苯酚浓度至300mg&dot;L-1,试验系统与对照系统中的污泥TTC-ETS活性差异性进一步增大(P=0。008),但在这一阶段后期,苯酚对污泥TTC-ETS活性的抑制率相对稳定在40%左右。

 

留言框

  • 产品:

  • 留言内容:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 详细地址:

  • 省份:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
客户至上 用心服务
在线客服
周一至周六
8:00-17:30